Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 7 - Section 7.4 - Integration of Rational Functions by Partial Fractions. - 7.4 Exercises - Page 515: 7

Answer

$\ln \left| {\frac{{x - 1}}{{x + 4}}} \right| + C$

Work Step by Step

$$\eqalign{ & \int {\frac{5}{{\left( {x - 1} \right)\left( {x + 4} \right)}}} dx \cr & {\text{Using the method of partial fractions}} \cr & \frac{5}{{\left( {x - 1} \right)\left( {x + 4} \right)}} = \frac{A}{{x - 1}} + \frac{B}{{x + 4}} \cr & {\text{Multiply the equation by }}\left( {x - 1} \right)\left( {x + 4} \right) \cr & 5 = A\left( {x + 4} \right) + B\left( {x - 1} \right){\text{ }}\left( {\bf{1}} \right) \cr & {\text{Let }}x = 1{\text{ into }}\left( {\bf{1}} \right) \cr & 5 = A\left( {1 + 4} \right) + B\left( {1 - 1} \right) \to A = 1 \cr & {\text{Let }}x = - 4{\text{ into }}\left( {\bf{1}} \right) \cr & 5 = A\left( { - 4 + 4} \right) + B\left( { - 4 - 1} \right) \to B = - 1 \cr & {\text{Substituting }}A{\text{ and }}B{\text{ into the partial fraction decomposition}} \cr & \frac{5}{{\left( {x - 1} \right)\left( {x + 4} \right)}} = \frac{A}{{x - 1}} + \frac{B}{{x + 4}} = \frac{1}{{x - 1}} - \frac{1}{{x + 4}} \cr & {\text{Therefore}}{\text{,}} \cr & \int {\frac{5}{{\left( {x - 1} \right)\left( {x + 4} \right)}}} dx = \int {\left( {\frac{1}{{x - 1}} - \frac{1}{{x + 4}}} \right)} dx \cr & {\text{Integrating}} \cr & = \ln \left| {x - 1} \right| - \ln \left| {x + 4} \right| + C \cr & {\text{Using logarithmic properties}} \cr & = \ln \left| {\frac{{x - 1}}{{x + 4}}} \right| + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.