Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 7 - Section 7.4 - Integration of Rational Functions by Partial Fractions. - 7.4 Exercises - Page 515: 29

Answer

\[\int \frac{x^3+4x+3}{x^4+5x^2+4} dx =\frac{1}{2}\ln |x^2+1|+\arctan (x)-\frac{1}{2}\arctan (\frac{x}{2})+C\]

Work Step by Step

Make \[\frac{x^3+4x+3}{x^4+5x^2+4}=\frac{Ax+B}{x^2+1}+\frac{Cx+D}{x^2+4} = \frac{(A+C)x^3+(B+D)x^2+(4A+C)x+4B+D}{x^4+5x^2+4} \] $\therefore$ \[ \begin{cases} A=1\\ B=1\\ C=0\\ D=-1\\ \end{cases} \] $\therefore$\[\int \frac{x^3+4x+3}{x^4+5x^2+4} dx = \int (\frac{x+1}{x^2+1}+\frac{-1}{x^2+4}) dx=\frac{1}{2}\ln |x^2+1|+\arctan (x)-\frac{1}{2}\arctan (\frac{x}{2})+C\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.