Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 7 - Section 7.4 - Integration of Rational Functions by Partial Fractions. - 7.4 Exercises - Page 515: 13

Answer

$\frac{1}{a}\ln \left| {\frac{{x - a}}{x}} \right| + C$

Work Step by Step

$$\eqalign{ & \int {\frac{1}{{x\left( {x - a} \right)}}} dx \cr & {\text{Factoring the integrand}} \cr & = \int {\frac{1}{{x\left( {x - a} \right)}}} dx \cr & {\text{Using the method of partial fractions}} \cr & \frac{1}{{x\left( {x - a} \right)}} = \frac{A}{x} + \frac{B}{{x - a}} \cr & {\text{Multiply the equation by }}x\left( {x - 4} \right) \cr & 1 = A\left( {x - a} \right) + Bx{\text{ }}\left( {\bf{1}} \right) \cr & {\text{Let }}x = 0{\text{ into }}\left( {\bf{1}} \right) \cr & 1 = A\left( {0 - a} \right) + B\left( 0 \right){\text{ }} \to A = - \frac{1}{a} \cr & {\text{Let }}x = a{\text{ into }}\left( {\bf{1}} \right) \cr & 1 = A\left( {a - a} \right) + B\left( a \right) \to B = \frac{1}{a} \cr & {\text{Substituting }}A{\text{ and }}B{\text{ into the partial fraction decomposition}} \cr & \frac{1}{{x\left( {x - a} \right)}} = \frac{{ - 1/a}}{x} + \frac{{1/a}}{{x - a}} \cr & {\text{Therefore}}{\text{,}} \cr & \int {\frac{1}{{x\left( {x - a} \right)}}} dx = \int {\left( {\frac{{ - 1/a}}{x} + \frac{{1/a}}{{x - a}}} \right)} dx \cr & {\text{Integrating}} \cr & = - \frac{1}{a}\ln \left| x \right| + \frac{1}{a}\ln \left| {x - a} \right| + C \cr & {\text{Using logarithmic properties}} \cr & = \frac{1}{a}\ln \left| {\frac{{x - a}}{x}} \right| + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.