Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 7 - Section 7.4 - Integration of Rational Functions by Partial Fractions. - 7.4 Exercises - Page 515: 24

Answer

$2\ln \left| x \right| + \frac{1}{2}\ln \left( {{x^2} + 4} \right) - \frac{1}{2}\arctan \left( {\frac{x}{2}} \right) + C$

Work Step by Step

$$\eqalign{ & \int {\frac{{3{x^2} - x + 8}}{{{x^3} + 4x}}} dx \cr & {\text{Factoring the denominator}} \cr & = \int {\frac{{3{x^2} - x + 8}}{{x\left( {{x^2} + 4} \right)}}} dx \cr & {\text{The partial fraction decomposition of the integrand has the}} \cr & {\text{form}} \cr & \frac{{3{x^2} - x + 8}}{{x\left( {{x^2} + 4} \right)}} = \frac{A}{x} + \frac{{Bx + C}}{{{x^2} + 4}} \cr & {\text{Multiply both sides by the least common denominator}} \cr & 3{x^2} - x + 8 = A\left( {{x^2} + 4} \right) + \left( {Bx + C} \right)x \cr & 3{x^2} - x + 8 = A{x^2} + 4A + B{x^2} + Cx \cr & {\text{Collecting like terms}} \cr & 3{x^2} - x + 8 = \left( {A{x^2} + B{x^2}} \right) + Cx + 4A \cr & {\text{We obtain the following system of equations}} \cr & A + B = 3 \cr & C = - 1 \cr & 4A = 8 \cr & A = 2,{\text{ }}B = 1,{\text{ }}C = - 1 \cr & {\text{Therefore}}{\text{,}} \cr & \frac{{3{x^2} - x + 8}}{{x\left( {{x^2} + 4} \right)}} = \frac{A}{x} + \frac{{Bx + C}}{{{x^2} + 4}} \cr & \frac{{3{x^2} - x + 8}}{{x\left( {{x^2} + 4} \right)}} = \frac{2}{x} + \frac{{x - 1}}{{{x^2} + 4}} \cr & \int {\frac{{3{x^2} - x + 8}}{{x\left( {{x^2} + 4} \right)}}} dx = \int {\left( {\frac{2}{x} + \frac{{x - 1}}{{{x^2} + 4}}} \right)} dx \cr & = \int {\left( {\frac{2}{x} + \frac{x}{{{x^2} + 4}} - \frac{1}{{{x^2} + 4}}} \right)} dx \cr & {\text{Integrating}} \cr & = 2\ln \left| x \right| + \frac{1}{2}\ln \left( {{x^2} + 4} \right) - \frac{1}{2}\arctan \left( {\frac{x}{2}} \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.