Answer
$\int$ $\frac{x^{4}+3x^2+1}{x^5+5x^3+5x}$ $dx =$ $\frac{1}{5} ln |x^5+5x^3+5x|+c$
Work Step by Step
$let $
$u=x^5+5x^3+5x$
$ du = 5(x^4 + 3x^2+1)dx$
$So, $ $ dx = \frac{du}{5(x^4 + 3x^2+1)}$
$Then$ $we $ $ have $ $:$
$\frac{1}{5} \int \frac{1}{u} du$
$so$ $we$ $get, $
$\frac{1}{5} ln |u| +c$
$which$ $is, $
$\frac{1}{5} ln |x^5+5x^3+5x| +c$