Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 7 - Section 7.4 - Integration of Rational Functions by Partial Fractions. - 7.4 Exercises - Page 515: 15

Answer

$x + \frac{{{x^2}}}{2} + \ln \left| {x - 1} \right| + C$

Work Step by Step

$$\eqalign{ & \int {\frac{{{x^2}}}{{x - 1}}} dx \cr & {\text{The integrand is an improper rational function}}{\text{, then the first }} \cr & {\text{step is apply the long division:}} \cr & \frac{{{x^2}}}{{x - 1}} = 1 + x + \frac{1}{{x - 1}} \cr & {\text{Therefore}}{\text{,}} \cr & \int {\frac{{{x^2}}}{{x - 1}}} dx = \int {\left( {1 + x + \frac{1}{{x - 1}}} \right)} dx \cr & = \int {dx} + \int x dx + \int {\frac{1}{{x - 1}}} dx \cr & {\text{Integrating}} \cr & = x + \frac{{{x^2}}}{2} + \ln \left| {x - 1} \right| + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.