Answer
The multiplication of the binary numbers $110001$ and $10111$ is $10001100111$.
Work Step by Step
Multiply the binary numbers as,
$\begin{align}
& \underline{\begin{align}
& \underline{\begin{matrix}
{} & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\text{1 1 0 0 0 1} \\
\text{x} & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\text{1 0 1 1 1} \\
\end{matrix}} \\
& \begin{matrix}
\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\text{1 1 0 0 0 1} \\
\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\text{1 1 0 0 0 1} \\
\text{ }\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\text{1 1 0 0 0 1} \\
\,\,\,\,\,\,\,\,\text{0 0 0 0 0 0} \\
\text{1 1 0 0 0 1} \\
\end{matrix} \\
& \,\,\,\,\,\,\,\,\,\,\text{1 1 0 0 0 1} \\
\end{align}} \\
& \,\,\,\,\,\,\,\,\,\text{1 0 0 0 1}\,\text{ 1 1 0 0 1 }\,\text{1 }\,\,\text{1} \\
\end{align}$
Now, check the result by decimal multiplication:
The equivalent decimal notation for the above binary number will be obtained by writing down the powers of two from right to left and adding them as,
$\begin{align}
& 110001=1\times {{2}^{5}}+1\times {{2}^{4}}+0\times {{2}^{3}}+0\times {{2}^{2}}+0\times {{2}^{1}}+1\times {{2}^{0}} \\
& =32+16+0+1 \\
& =49
\end{align}$
Also,
$\begin{align}
& 10111=1\times {{2}^{4}}+0\times {{2}^{3}}+1\times {{2}^{2}}+1\times {{2}^{1}}+1\times {{2}^{0}} \\
& =16+4+2+1 \\
& =23
\end{align}$
And,
$\begin{align}
& 10001100111=1\times {{2}^{10}}+0\times {{2}^{9}}+0\times {{2}^{8}}+0\times {{2}^{7}}+1\times {{2}^{6}}+1\times {{2}^{5}}+0\times {{2}^{4}}+0\times {{2}^{3}}+1\times {{2}^{2}}+1\times {{2}^{1}}+1\times {{2}^{0}} \\
& =1024+64+32+4+2+1 \\
& =1127
\end{align}$
Since,
$49\times 27=1127$
Thus, the obtained result is correct.