Answer
$t=11.22$ years
Work Step by Step
$P=7250, n=12, r=6.5\%=0.065, A=15000$
$A=P(1+\frac{r}{n})^{nt}=7250(1+\frac{0.065}{12})^{12t}=15000$
$(1+0.00542)^{12t}=2.07$
$12t\log(1.00542)=\log 2.07$
$t=\frac{\log 2.07}{4\log 1.00542}=11.22$ years