Answer
$t=8.22$ years
Work Step by Step
$P=12500, n=4, r=5.75\%=0.0575, A=20000$
$A=P(1+\frac{r}{n})^{nt}=12500(1+\frac{0.0575}{4})^{4t}=20000$
$(1+0.0144)^{4t}=1.6$
$4t\log(1.0144)=\log 1.6$
$t=\frac{\log 1.6}{4\log 1.0144}=8.22$ years