Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 9 - Section 9.2 - Composite and Inverse Functions - Exercise Set - Page 687: 42

Answer

$f^{-1}(x)=\frac{-3-x}{x-2}$

Work Step by Step

$f(x)=\frac{2x-3}{x+1}$ $y=\frac{2x-3}{x+1}$ a. $x=\frac{2y-3}{y+1}$ $xy+x=2y-3$ $xy-2y=-3-x$ $y(x-2)=-3-x$ $y=\frac{-3-x}{x-2}$ $f^{-1}(x)=\frac{-3-x}{x-2}$ b. $f(f^{-1}(x))=\frac{2\left(\frac{-3-x}{x-2}\right)-3}{\frac{-3-x}{x-2}+1}=\frac{-5x}{-5}=x$ and $f^{-1}(f(x))=\frac{-3-\frac{2x-3}{x+1}}{\frac{2x-3}{x+1}-2}=\frac{-5x}{-5}=x$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.