Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 9 - Section 9.2 - Composite and Inverse Functions - Exercise Set - Page 687: 41

Answer

$f^{-1}(x)=\frac{3x+1}{x-2}$

Work Step by Step

$f(x)=\frac{2x+1}{x-3}$ $y=\frac{2x+1}{x-3}$ a. $x=\frac{2y+1}{y-3}$ $xy-3x=2y+1$ $xy-2y=3x+1$ $y(x-2)=3x+1$ $y=\frac{3x+1}{x-2}$ $f^{-1}(x)=\frac{3x+1}{x-2}$ b. $f(f^{-1}(x))=\frac{2\left(\frac{3x+1}{x-2}\right)+1}{\frac{3x+1}{x-2}-3}=\frac{7x}{7}=x$ and $f^{-1}(f(x))=\frac{3\left(\frac{2x+1}{x-3}\right)+1}{\frac{2x+1}{x-3}-2}=\frac{7x}{7}=x$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.