#### Answer

$\sqrt[6]{(x-4)^5}$

#### Work Step by Step

RECALL:
For nonegative numbers a and b,
$\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$
Also,
$(x-c)^{a}+(x-c)^{b}=(x-c)^{ab}$
Use the rules above to obtain:
$=\sqrt[6]{(x-4)(x-4)^4}
\\=\sqrt[6]{(x-4)^{1+4}}
\\=\sqrt[6]{(x-4)^5}$