Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 6 - Review Exercises - Page 496: 14

Answer

$\frac{(y+4)(y+2)}{(y-6)(y^2+4y+16)}$.

Work Step by Step

The given expression is $=\frac{y^2-16}{y^3-64}\div \frac{y^2-3y-18}{y^2+5y+6}$ Factor $y^2-16$. $=y^2-4^2$ Use the algebraic identity $a^2-b^2=(a+b)(a-b)$. $(y+4)(y-4)$ Factor $y^3-64$. $=y^3-4^3$ Use the algebraic identity $a^3-b^3=(a-b)(a^2+ab+b^2)$. $(y-4)(y^2+4y+16)$ Factor $y^2-3y-18$. Rewrite the middle term $-3y$ as $-6y+3y$. $=y^2-6y+3y-18$ Group terms. $=(y^2-6y)+(3y-18)$ Factor each term. $=y(y-6)+3(y-6)$ Factor out $(y-6)$. $=(y-6)(y+3)$ . Factor $y^2+5y+6$. Rewrite the middle term $5y$ as $3y+2y$. $=y^2+3y+2y+6$ Group terms. $=(y^2+3y)+(2y+6)$ Factor each term. $=y(y+3)+2(y+3)$ Factor out $(y+3)$. $=(y+3)(y+2)$ Substitute the factor into the given expression. $=\frac{(y+4)(y-4)}{(y-4)(y^2+4y+16)}\div \frac{(y-6)(y+3)}{(y+3)(y+2)}$ $=\frac{(y+4)(y-4)}{(y-4)(y^2+4y+16)}\times \frac{(y+3)(y+2)}{(y-6)(y+3)}$ Cancel common terms. $=\frac{(y+4)(y+2)}{(y-6)(y^2+4y+16)}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.