Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 6 - Review Exercises - Page 496: 13

Answer

$\frac{1}{2}$.

Work Step by Step

The given expression is $=\frac{x^2+16x+64}{2x^2-128}\div \frac{x^2+10x+16}{x^2-6x-16}$ Factor $x^2+16x+64$. Rewrite the middle term $16x$ as $8x+8x$. $=x^2+8x+8x+64$ Group terms. $=(x^2+8x)+(8x+64)$ Factor each term. $=x(x+8)+8(x+8)$ Factor out $(x+8)$. $=(x+8)(x+8)$ Factor $2x^2-128$. $=2(x^2-64)$ $=2(x^2-8^2)$ Use the algebraic identity $a^2-b^2=(a+b)(a-b)$. $2(x+8)(x-8)$. Factor $x^2+10x+16$ Rewrite the middle term $10x$ as $8x+2x$. $=x^2+8x+2x+16$ Group terms. $=(x^2+8x)+(2x+16)$ Factor each term. $=x(x+8)+2(x+8)$ Factor out $(x+8)$. $=(x+8)(x+2)$ Factor $x^2-6x-16$ Rewrite the middle term $-6x$ as $-8x+2x$. $=x^2-8x+2x-16$ Group terms. $=(x^2-8x)+(2x-16)$ Factor each term. $=x(x-8)+2(x-8)$ Factor out $(x-8)$. $=(x-8)(x+2)$ Substitute the factor into the given expression. $=\frac{(x+8)(x+8)}{2(x+8)(x-8)}\div \frac{(x+8)(x+2)}{(x-8)(x+2)}$ $=\frac{(x+8)(x+8)}{2(x+8)(x-8)}\times \frac{(x-8)(x+2)}{(x+8)(x+2)}$ Cancel common terms. $=\frac{1}{2}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.