Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 8 - Radical Functions - Chapter Test - Page 672: 19

Answer

$16 a b^2 \sqrt{7 a b}+4 b \sqrt{7 a}$

Work Step by Step

Given \begin{equation} 2 a \sqrt{7 a b^5}+7 b \sqrt{28 a^3 b^3}+4 b \sqrt{7 a}. \end{equation} Simplify each of the first two terms and collect like terms. \begin{equation} \begin{aligned} 2 a \sqrt{7 a b^5}&=2 a \sqrt{7a b^4\cdot b}\\ &= 2ab^2 \sqrt{7ab} \\ 7 b \sqrt{28 a^3 b^3}& = 7 b \sqrt{4\cdot 7 a^2\cdot a b^2\cdot b}\\ &= 7b(2ab) \sqrt{7ab}\\ &= 14ab^2 \sqrt{7ab}. \end{aligned} \end{equation} Now, add the the like terms to get the final simplified expression. \begin{equation} \begin{aligned} & 2 a \sqrt{7 a b^5}+7 b \sqrt{28 a^3 b^3}+4 b \sqrt{7 a}=2ab^2 \sqrt{7ab}+ 14ab^2 \sqrt{7ab} +4 b \sqrt{7 a}\\ & =16 a b^2 \sqrt{7 a b}+4 b \sqrt{7 a}. \end{aligned} \end{equation} The solution is \begin{equation} 2 a \sqrt{7 a b^5}+7 b \sqrt{28 a^3 b^3}+4 b \sqrt{7 a}=16 a b^2 \sqrt{7 a b}+4 b \sqrt{7 a}. \end{equation}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.