Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 8 - Radical Functions - Chapter Test - Page 672: 16

Answer

$-1-i\frac{\sqrt{391}}{23}$; $-1+ i\frac{\sqrt{391}}{23} $

Work Step by Step

Given \begin{equation} 2.3 x^2+4.6 x+9=5. \end{equation} Use the quadratic formula to solve for $x$. \begin{equation} \begin{aligned} 2.3 x^2+4.6 x+9&=5\\ (2.3 x^2+4.6 x+4)\cdot 10&= 0\cdot 10\\ 23 x^2+46 x+40& = 0\\ x&=\frac{-46 \pm \sqrt{46^2-4 \cdot 23 \cdot 40}}{2 \cdot 23}\\ x&=\frac{-46 \pm \sqrt{-1564}}{2 \cdot 23}\\ x& = \frac{-46 \pm i \sqrt{4\cdot 391}}{2 \cdot 23}\\ x& = \frac{-46 \pm 2i\sqrt{391}}{2 \cdot 23}\\ x& = \frac{-23 \pm i \sqrt{391}}{ 23}. \end{aligned} \end{equation} The solution is $$ x= -1- i\frac{\sqrt{391}}{23}, \quad x= -1+ i\frac{\sqrt{391}}{23}. $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.