Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 8 - Radical Functions - Chapter Test - Page 672: 15

Answer

$-5+ i\frac{\sqrt{2}}{2}$; $-5- i\frac{\sqrt{2}}{2}$

Work Step by Step

Given \begin{equation} -4(x+5)^2+7=9. \end{equation} Use the square root property to solve for $x$. \begin{equation} \begin{aligned} -4(x+5)^2+7&=9\\ (x+5)^2&= \frac{9-7}{-4}\\ (x+5)^2& = -\frac{1}{2}\\ x+5&=\pm \frac{\sqrt{-1}}{\sqrt{2}}\\ x+5&=\pm \frac{i}{\sqrt{2}}\cdot \frac{\sqrt{2}}{\sqrt{2}}\\ x& = -5\pm i\frac{\sqrt{2}}{2}. \end{aligned} \end{equation} The solution is $$ x= -5+ i\frac{\sqrt{2}}{2} \quad , x= -5- i\frac{\sqrt{2}}{2}.$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.