Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 8 - Radical Functions - 8.1 Radical Functions - 8.1 Exercises - Page 626: 9

Answer

a) $f(45)= 12.847$ b) $x= 32$

Work Step by Step

Given $$f(x)=6 \sqrt[5]{x}= 6x^{\frac{1}{5}}.\tag{1}$$ a) Set $x= 45$ in equation $(1)$ and determine $f(45)$. \begin{equation} \begin{aligned} f(45)&=6\cdot 45^{\frac{1}{5}} \\ &\approx 6\cdot 2.14113\\ &\approx12.847. \end{aligned} \end{equation} b) Set $f(x)=12$ in equation $(1)$ and solve for $x$: \begin{equation} \begin{aligned} f(x) & =12 \\ 6x^{\frac{1}{5}}& =12 \\ x^{\frac{1}{5}} & = \frac{12}{6} \\ \left(x^{\frac{1}{5}}\right)^5& = \left(2\right)^5\\ x&=32. \end{aligned} \end{equation}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.