Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 8 - Radical Functions - 8.1 Radical Functions - 8.1 Exercises - Page 626: 16

Answer

a) $f(-12)\approx -1.919$ b) $x\approx -77364.094$

Work Step by Step

Given $$f(x)=\sqrt[5]{x-14}= \left( x-14 \right)^{\frac{1}{5}}.\tag{1}$$a) Set $x= -12$ in equation $(1)$ and determine $f(-12)$: \begin{equation} \begin{aligned} f(-12)&= \left(-12-14 \right)^{\frac{1}{5}} \\ &= \left( -26 \right)^{\frac{1}{5}} \\ &\approx -1.919. \end{aligned} \end{equation} b) Set $f(x)=-9.5$ in equation $(1)$ and solve for $x$: \begin{equation} \begin{aligned} f(x) & =-9.5 \\ \left( x-14 \right)^{\frac{1}{5}} & =-9.5 \\ \left(\left( x-14 \right)^{\frac{1}{5}} \right)^5& = \left(-9.5\right)^5\\ x-14 &=-77378.09375\\ x&= -77378.09375+14\\ x&\approx -77364.094. \end{aligned} \end{equation}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.