Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 6 - Logarithmic Functions - 6.4 Properties of Logarithms - 6.4 Exercises: 45

Answer

$\log_3 \frac{a^{2}b^{2}}{243c^{3}}$

Work Step by Step

$\log_3 a^{2} + 2\log_3 bc - 5 \log_3 3c$ $\log_3 a^{2} + \log_3 (bc)^{2} - 5 \log_3 3c$ $\log_3 a^{2} + \log_3 b^{2}c^{2} - 5 \log_3 3c$ $\log_3 a^{2}b^{2}c^{2} - \log_3 (3c)^{5}$ $\log_3 a^{2}b^{2}c^{2} - \log_3 243c^{5}$ $\log_3 \frac{a^{2}b^{2}c^{2}}{243c^{5}}$ $\log_3 \frac{a^{2}b^{2}}{243c^{3}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.