Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 4 - Quadratic Functions - 4.5 Solving Equations by Factoring - 4.5 Exercises - Page 362: 82

Answer

$y= 6 x^2-\frac{21}{10} x-\frac{9}{5}$

Work Step by Step

Since the zeros of the function are located at $x=- \frac{2}{5}$ and $x= \frac{3}{4}$, we can write $$ \begin{aligned} y & =a\left(x+\frac{2}{5}\right)\left(x-\frac{3}{4}\right) \\ & =a\left[\left(x+\frac{2}{5}\right) x-\frac{3}{4}\left(x+\frac{2}{5}\right)\right] \\ & =a\left(x^2+\frac{2}{5} x-\frac{3}{4} x-\frac{3}{10}\right) \\ & =a\left(x^2+\frac{2\cdot4-3\cdot5}{20} x-\frac{3}{10}\right)\\ &= a\left(x^2-\frac{7}{20} x-\frac{3}{10}\right)\\ y&= a x^2-\frac{7}{20} a x-\frac{3}{10} a. \end{aligned} $$ Given that $f(2)=18$, we can use the point $(x,y) = (2 , 18) $ to find the constant $a$. $$ \begin{aligned} a\left(2+\frac{2}{5}\right)\left(2-\frac{3}{4}\right) & =18 \\ a\left(\frac{2 \cdot 5+2}{5}\right)\left(\frac{2 \cdot 4-3}{4}\right) & =18 \\ a\left(\frac{12}{5}\right)\left(\frac{5}{4}\right) & =18 \\ 3 a & =18 \\ a & =6. \end{aligned} $$This gives $$ \begin{aligned} y & =6 x^2-\frac{7}{20}(6) x-\frac{3}{10}(6) \\ & =6 x^2-\frac{21}{10} x-\frac{9}{5}. \end{aligned} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.