Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 4 - Quadratic Functions - 4.5 Solving Equations by Factoring - 4.5 Exercises - Page 362: 81

Answer

$ y= -4 x^2+\frac{50}{3} x+6 $

Work Step by Step

Since the zeros of the function are located at $x=- \frac{1}{5}$ and $x= \frac{9}{2}$, we can write $$\begin{aligned} y & =a\left(x+\frac{1}{3}\right)\left(x-\frac{9}{2}\right) \\ & =a\left[\left(x+\frac{1}{3}\right) x-\frac{9}{2}\left(x+\frac{1}{3}\right)\right] \\ & =a\left[x^2+\frac{1}{3} x-\frac{9}{2} x-\frac{9}{2} \cdot \frac{1}{3}\right] \\ & =a\left[x^2+\frac{2 x-9 \cdot 3 x}{6}-\frac{3}{2}\right] \\ & =a\left(x^2-\frac{25}{6} x-\frac{3}{2}\right). \end{aligned} $$ Given that $f(3)=20$, we can use the point $(x,y) = (3 , 20) $ to find the constant $a$. $$ \begin{aligned} a\left(3+\frac{1}{3}\right)\left(3-\frac{9}{2}\right) & =20 \\ a\left(\frac{3 \cdot 3+1}{3}\right)\left(\frac{3 \cdot 2-9}{2}\right) & =20 \\ a\left(\frac{10}{3}\right)\left(-\frac{3}{2}\right) & =20 \\ -5 a & =20 \\ a & =-\frac{20}{5} \\ & =-4. \end{aligned} $$ This gives $$ \begin{aligned} \Rightarrow y & =-4 x^2-\frac{25}{6}(-4) x-\frac{3}{2}(-4) \\ & =-4 x^2+\frac{50}{3} x+6. \end{aligned} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.