Intermediate Algebra (12th Edition)

Published by Pearson
ISBN 10: 0321969359
ISBN 13: 978-0-32196-935-4

Chapter 9 - Section 9.6 - Exponential and Logarithmic Equations; Further Applications - 9.6 Exercises - Page 630: 16

Answer

$x\approx-4.607$

Work Step by Step

Taking the logarithm of both sides, the given equation, $ 3^{2x+1}=5^{x-1} $ is equivalent to \begin{align*}\require{cancel} \log3^{2x+1}&=\log5^{x-1} .\end{align*} Using the properties of logarithms, the equation above is equivalent to \begin{align*}\require{cancel} (2x+1)\log3&=(x-1)\log5 &(\text{use }\log_b x^y=y\log_b x) \\ 2x\log3+\log3&=x\log5-\log5 &(\text{use the Distributive Property}) .\end{align*} Using the properties of equality, the equation above is equivalent to \begin{align*}\require{cancel} 2x\log3-x\log5&=-\log5-\log3 \\ x(2\log3-\log5)&=-\log5-\log3 &(\text{factor the common factor}) \\\\ \dfrac{x(\cancel{2\log3-\log5})}{\cancel{2\log3-\log5}}&=\dfrac{-\log5-\log3}{2\log3-\log5} \\\\ x&=\dfrac{-\log5-\log3}{2\log3-\log5} .\end{align*} Using a calculator, the approximate values of each logarithmic expression above are \begin{align*} \log3&\approx0.4771 \\ \log5&\approx0.6990 .\end{align*} Substituting the approximate values in $ x=\dfrac{-\log5-\log3}{2\log3-\log5} $, then \begin{align*} x&\approx\dfrac{-0.6990-0.4771}{2(0.4771)-0.6990} \\\\ x&\approx-4.607 .\end{align*} Hence, the solution to the equation $ 3^{2x+1}=5^{x-1} $ is $ x\approx-4.607 $.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.