Intermediate Algebra (12th Edition)

Published by Pearson
ISBN 10: 0321969359
ISBN 13: 978-0-32196-935-4

Chapter 9 - Section 9.1 - Inverse Functions - 9.1 Exercises - Page 589: 29

Answer

$f(^{-1}(x)=\dfrac{5x+1}{2x+2},\text{ }x\ne-1$

Work Step by Step

Let $y=f(x)$. Then the given one-to-one function, $ f(x)=\dfrac{-2x+1}{2x-5},\text{ }x\ne\dfrac{5}{2} ,$ becomes \begin{align*}\require{cancel} y&=\dfrac{-2x+1}{2x-5},\text{ }x\ne\dfrac{5}{2} .\end{align*} To find the inverse, interchange the $x$ and $y$ variables and then solve for $y$. That is, \begin{align*} x&=\dfrac{-2y+1}{2y-5} &(\text{interchange $x$ and $y$}) \\\\ (2y-5)(x)&=\left(\dfrac{-2y+1}{\cancel{2y-5}}\right)(\cancel{2y-5}) &(\text{solve for $y$}) \\\\ 2xy-5x&=-2y+1 \\ 2xy+2y&=5x+1 \\ 2y(x+1)&=5x+1 \\\\ \dfrac{\cancel2y(\cancel{x+1})}{\cancel2(\cancel{x+1})}&=\dfrac{5x+1}{2(x+1)} \\\\ y&=\dfrac{5x+1}{2x+2} .\end{align*} Hence, the inverse of $ f(x)=\dfrac{-2x+1}{2x-5},\text{ }x\ne\dfrac{5}{2} $ is $ f(^{-1}(x)=\dfrac{5x+1}{2x+2},\text{ }x\ne-1 $.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.