Intermediate Algebra (12th Edition)

Published by Pearson
ISBN 10: 0321969359
ISBN 13: 978-0-32196-935-4

Chapter 9 - Section 9.1 - Inverse Functions - 9.1 Exercises - Page 589: 28

Answer

$f(^{-1}(x)=\dfrac{-4x-10}{x-5},\text{ }x\ne5$

Work Step by Step

Let $y=f(x)$. Then the given one-to-one function, $ f(x)=\dfrac{5x-10}{x+4},\text{ }x\ne-4 ,$ becomes \begin{align*}\require{cancel} y&=\dfrac{5x-10}{x+4},\text{ }x\ne-4 .\end{align*} To find the inverse, interchange the $x$ and $y$ variables and then solve for $y$. That is, \begin{align*} x&=\dfrac{5y-10}{y+4} &(\text{interchange $x$ and $y$}) \\\\ (y+4)(x)&=\left(\dfrac{5y-10}{\cancel{y+4}}\right)(\cancel{y+4}) &(\text{solve for $y$}) \\\\ xy+4x&=5y-10 \\ xy-5y&=-4x-10 \\\\ y(x-5)&=-4x-10 \\\\ \dfrac{y(\cancel{x-5})}{\cancel{x-5}}&=\dfrac{-4x-10}{x-5} \\\\ y&=\dfrac{-4x-10}{x-5} .\end{align*} Hence, the inverse of $ f(x)=\dfrac{5x-10}{x+4},\text{ }x\ne-4 $ is $ f(^{-1}(x)=\dfrac{-4x-10}{x-5},\text{ }x\ne5 $.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.