Intermediate Algebra (12th Edition)

Published by Pearson
ISBN 10: 0321969359
ISBN 13: 978-0-32196-935-4

Chapter 9 - Section 9.1 - Inverse Functions - 9.1 Exercises - Page 589: 26

Answer

$f(^{-1}(x)=\dfrac{-5x+3}{x-1},\text{ }x\ne1$

Work Step by Step

Let $y=f(x)$. Then the given one-to-one function, $ f(x)=\dfrac{x+3}{x+5},\text{ }x\ne-5 ,$ becomes \begin{align*}\require{cancel} y&=\dfrac{x+3}{x+5},\text{ }x\ne-5 .\end{align*} To find the inverse, interchange the $x$ and $y$ variables and then solve for $y$. That is, \begin{align*} x&=\dfrac{y+3}{y+5} &(\text{interchange $x$ and $y$}) \\\\ (y+5)(x)&=\left(\dfrac{y+3}{\cancel{y+5}}\right)(\cancel{y+5}) &(\text{solve for$y$}) \\\\ xy+5x&=y+3 \\ xy-y&=-5x+3 \\ y(x-1)&=-5x+3 \\\\ \dfrac{y(\cancel{x-1})}{\cancel{x-1}}&=\dfrac{-5x+3}{x-1} \\\\ y&=\dfrac{-5x+3}{x-1},\text{ }x\ne1 .\end{align*} Hence, the inverse of $ f(x)=\dfrac{x+3}{x+5},\text{ }x\ne-5 $ is $ f(^{-1}(x)=\dfrac{-5x+3}{x-1},\text{ }x\ne1 $.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.