Answer
one-to-one function
inverse: $f^{-1}(x)=x-3$
Work Step by Step
Some of the ordered pairs of the given function, $
f(x)=x+3
$, are $
\left\{(-2,1)(-1,2),(0,3),(1,4),(2,5),...\right\}
$. Note that every $y$-coordinate from this function is unique. Hence, the given function is a one-to-one function.
To find the inverse, let $y=f(x)$. Then, interchange the $x$ and $y$ variables and solve for $y$. That is,
\begin{align*}
y=x+3
\Rightarrow&
x=y+3
&(\text{interchange $x$ and $y$})
\\&
x-3=y
&(\text{solve for $y$})
\\&
y=x-3
.\end{align*}
Hence, the inverse is $
f^{-1}(x)=x-3
$.