Intermediate Algebra (12th Edition)

Published by Pearson
ISBN 10: 0321969359
ISBN 13: 978-0-32196-935-4

Chapter 8 - Summary Exercises - Applying Methods for Solving Quadratic Equations - Page 531: 30

Answer

$z=3$

Work Step by Step

Squaring both sides, the given equation, $ z=\sqrt{\dfrac{5z+3}{2}} ,$ is equivalent to \begin{align*} (z)^2&=\left(\sqrt{\dfrac{5z+3}{2}}\right)^2 \\\\ z^2&=\dfrac{5z+3}{2} .\end{align*} In the form $ax^2+bx+c=0,$ the equation abovec is equivalent to \begin{align*}\require{cancel} 2(z^2)&=\left(\dfrac{5z+3}{\cancel2}\right)\cancel2 \\\\ 2z^2&=5z+3 \\ 2z^2-5z-3&=0 .\end{align*} Using factoring of trinomials, the equation above is equivalent to \begin{align*} (z-3)(2z+1)&=0 .\end{align*} Equating each factor to zero (Zero Product Property) and solving for the variable, then \begin{array}{l|r} z-3=0 & 2z+1=0 \\ z=3 & 2z=-1 \\\\ & z=-\dfrac{1}{2} .\end{array} Checking by substituting the solutions in the given equation results to \begin{array}{l|r} \text{If }z=3: & \text{If }z=-\dfrac{1}{2}: \\\\ 3\overset{?}=\sqrt{\dfrac{5(3)+3}{2}} & -\dfrac{1}{2}\overset{?}=\sqrt{\dfrac{5\left(-\dfrac{1}{2}\right)+3}{2}} \\\\ 3\overset{?}=\sqrt{\dfrac{15+3}{2}} & -\dfrac{1}{2}\ne\text{ some nonnegative number}. \\\\ 3\overset{?}=\sqrt{\dfrac{18}{2}} & \\ 3\overset{?}=\sqrt{9} & \\ 3\overset{\checkmark}=3 & \end{array} Since $z=-\dfrac{1}{2}$ does not satisfy the original equation then the only solution of the equation $ z=\sqrt{\dfrac{5z+3}{2}} $ is $z=3$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.