Elementary Linear Algebra 7th Edition

Published by Cengage Learning
ISBN 10: 1-13311-087-8
ISBN 13: 978-1-13311-087-3

Chapter 6 - Linear Transformations - 6.3 Matrices for Linear Transformations - 6.3 Exercises - Page 322: 8

Answer

$ \left[ {\begin{array}{*{20}{c}} 0\\ 6\\ 6\\ {-6} \end{array}} \right]$

Work Step by Step

Take the standard basis for $R^2$, which is ${(1,0),(0,1)}=\{{e_1,e_2}\}$. Then, $T(1,0)=(1+0,1-0,2(1),2(0))=(1,1,2,0)\\ T(0,1)=(0+1,0-1,2(0),2(1))=(1,-1,0,2) $ Therefore, the matrix corresponding to the linear transformation $T$ is given by: $A=[T(e_1)$ $T(e_2)]$ $=\left[ {\begin{array}{*{20}{c}} 1&1\\ 1&{ - 1}\\2&0\\0&2 \end{array}} \right]$ Hence, the image of $v = \left[ {\begin{array}{*{20}{c}} 3\\ { - 3} \end{array}} \right]$ is $T(v) = Av = \left[ {\begin{array}{*{20}{c}} 1&1\\ 1&{ - 1}\\2&0\\0&2 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 3\\ { - 3} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 0\\ 6\\ 6\\ {-6} \end{array}} \right]$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.