Elementary Linear Algebra 7th Edition

Published by Cengage Learning
ISBN 10: 1-13311-087-8
ISBN 13: 978-1-13311-087-3

Chapter 6 - Linear Transformations - 6.3 Matrices for Linear Transformations - 6.3 Exercises - Page 322: 6

Answer

$\left[ {\begin{array}{*{20}{c}} 0&0&0&0\\ 0&0&0&0\\0&0&0&0\\0&0&0&0 \end{array}} \right]$

Work Step by Step

Take the standard basis for $R^4$, which is ${(1,0,0,0),(0,1,0,0),(0,0,,0),(0,0,0,1)}=\{{e_1,e_2,e_3,e_4}\}$. Then, $T(e_1)=(0,0,0,0)\\ T(e_2)=(0,0,0,0)\\ T(e_3)=(0,0,0,0)\\ T(e_4)=(0,0,0,0) $ Therefore, the matrix corresponding to the linear transformation $T$ is given by: $A=[T(e_1)$ $T(e_2)$ $T(e_3)$ $T(e_4)]$ $=\left[ {\begin{array}{*{20}{c}} 0&0&0&0\\ 0&0&0&0\\0&0&0&0\\0&0&0&0 \end{array}} \right]$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.