Elementary Linear Algebra 7th Edition

Published by Cengage Learning
ISBN 10: 1-13311-087-8
ISBN 13: 978-1-13311-087-3

Chapter 6 - Linear Transformations - 6.3 Matrices for Linear Transformations - 6.3 Exercises - Page 322: 10

Answer

$ \left[ {\begin{array}{*{20}{c}} { - 2}\\ 4\\ 2\\ 0 \end{array}} \right]$

Work Step by Step

Take the standard basis for $R^4$, which is $(1,0,0,0),(0,1,0,0,),(0,0,1,0), (0,0,0,1)=\{e_1,e_2,e_3,e_4\}$. Given $\displaystyle T(x_1,x_2,x_3,x_4)=(x_1-x_3,x_2-x_4,x_3-x_1,x_2+x_4)$ Then, $T(1,0,0,0)=(1-0,0-0,0-1,0+0)=(1,0,-1,0)\\ T(0,1,0,0)=(0-0,1-0,0-0,1+0)=(0,1,0,1)\\ T(0,0,1,0)=(0-1,0-0,1-0,0+0)=(-1,0,1,0)\\ T(0,0,0,1)=(0-0,0-1,0-0,0+1)=(0,-1,0,1)$ Therefore, the matrix corresponding to the linear transformation $T$ is given by: $A=[T(e_1)$ $T(e_2)$ $T(e_3)$ $T(e_4)]$ $=\left[ {\begin{array}{*{20}{c}} 1&0&{ - 1}&0\\ 0&1&0&{-1}\\ {-1}&0&1&0\\ 0&1&0&1 \end{array}} \right]$ Hence, the image of $v=\left[ {\begin{array}{*{20}{c}} 1\\ { 2}\\3\\{-2} \end{array}} \right]$ is $\begin{array}{l} T(v) = Av\\ \Rightarrow T\left[ {\begin{array}{*{20}{c}} 1\\ 2\\ 3\\ { - 2} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 1&0&{ - 1}&0\\ 0&1&0&{ - 1}\\ { - 1}&0&1&0\\ 0&1&0&1 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 1\\ 2\\ 3\\ { - 2} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} { - 2}\\ 4\\ 2\\ 0 \end{array}} \right] \end{array}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.