Elementary Linear Algebra 7th Edition

Published by Cengage Learning
ISBN 10: 1-13311-087-8
ISBN 13: 978-1-13311-087-3

Chapter 6 - Linear Transformations - 6.3 Matrices for Linear Transformations - 6.3 Exercises - Page 322: 3

Answer

$\left[ {\begin{array}{*{20}{c}} 1&1&0\\ 1&{ - 1}&0\\{-1}&0&1 \end{array}} \right]$

Work Step by Step

Take the standard basis for $R^3$, which is ${(1,0,0),(0,1,0),(0,0,1)}=\{{e_1,e_2,e_3}\}$. Then, $T(1,0,0)=(1+0,1-0,0-1)=(1,1,-1)\\ T(0,1,0)=(0+1,0-1,0-0)=(1,-1,0)\\ T(0,0,1)=(0+0,0-0,1-0)=(0,0,1) $ Therefore, the matrix corresponding to the linear transformation $T$ is given by: $A=[T(e_1)$ $T(e_2)$ $T(e_3)$] $=\left[ {\begin{array}{*{20}{c}} 1&1&0\\ 1&{ - 1}&0\\{-1}&0&1 \end{array}} \right]$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.