Elementary Linear Algebra 7th Edition

Published by Cengage Learning
ISBN 10: 1-13311-087-8
ISBN 13: 978-1-13311-087-3

Chapter 6 - Linear Transformations - 6.3 Matrices for Linear Transformations - 6.3 Exercises - Page 322: 7

Answer

$\left[ {\begin{array}{*{20}{c}} 1\\ 4 \end{array}} \right]$

Work Step by Step

Take the standard basis for $R^3$, which is ${(1,0,0),(0,1,0),(0,0,1)}=\{{e_1,e_2,e_3}\}$. Then, $T(1,0,0)=(2(1)+0,3(0)-0)=(2,0)\\ T(0,1,0)=(2(0)+1,3(1)-0)=(1,3)\\ T(0,0,1)=(2(0)+0,3(0)-1)=(0,-1) $ Therefore, the matrix corresponding to linear the transformation $T$ is given by: $A=[T(e_1)$ $T(e_2)$ $T(e_3)]$ $=\left[ {\begin{array}{*{20}{c}} 2&1&0\\ 0&3&{ - 1} \end{array}} \right]$ Hence, the image of $v = \left[ {\begin{array}{*{20}{c}} 0\\ 1\\ { - 1} \end{array}} \right]$ is $T(v) = Av = \left[ {\begin{array}{*{20}{c}} 2&1&0\\ 0&3&{ - 1} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 0\\ 1\\ { - 1} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 1\\ 4 \end{array}} \right]$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.