Elementary Linear Algebra 7th Edition

Published by Cengage Learning
ISBN 10: 1-13311-087-8
ISBN 13: 978-1-13311-087-3

Chapter 6 - Linear Transformations - 6.3 Matrices for Linear Transformations - 6.3 Exercises - Page 322: 31

Answer

$T$ is invertible and $T^{-1}(x,y)=\left[ {\begin{array}{*{20}{c}} { - \frac{x}{2}\\ \frac{y}{2}} \end{array}} \right]$

Work Step by Step

Take the standard basis for $R^2,$ which is $\{(1,0),(0,1)\}=\{e_1,e_2\}$ We are given $T(x,y)=(-2x,2y)$ Then, we have $T(1,0)=(-2,0)\\ T(0,1)=(0,2)$ Therefore, the matrix corresponding to the linear transformation $T$ is given by: $A=[T(e_1)$ $T(e_2)]$ $=\left[ {\begin{array}{*{20}{c}} { - 2}&0\\ 0&{ 2} \end{array}} \right]$ Since $A$ is invertible, then $T$ is invertible. Therefore, the matrix corresponding to the linear transformation $T^{-1}$ is given by: $A^{-1}=\left[ {\begin{array}{*{20}{c}} { - \frac{1}{2}}&0\\ 0&{ \frac{1}{2}} \end{array}} \right]$ Hence, the linear transformation $T^{-1}$ is defined as: $T^{-1}(x,y)=A^{-1}(x,y)$ $=\left[ {\begin{array}{*{20}{c}} { - \frac{1}{2}}&0\\ 0&{ \frac{1}{2}} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} { x\\ y} \end{array}} \right]=\left[ {\begin{array}{*{20}{c}} { - \frac{x}{2}\\ \frac{y}{2}} \end{array}} \right]$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.