Elementary Linear Algebra 7th Edition

Published by Cengage Learning
ISBN 10: 1-13311-087-8
ISBN 13: 978-1-13311-087-3

Chapter 6 - Linear Transformations - 6.1 Introduction to Linear Transformations - 6.1 Exercises - Page 301: 66

Answer

The preimage of $1$ is $\displaystyle a{x^2} + bx + \left( {1 - \frac{a}{3} - \frac{b}{2}} \right)$

Work Step by Step

The domain is $P_2$, which consists of all polynomials of degree at most $2$. So, let the preimage of $1$ be $f(x)=ax^2+bx+c$. Then $T(f(x))=1$ $\displaystyle \begin{array}{l} \displaystyle\int\limits_0^1 {(a{x^2} + bx + c)} dx = 1\\ \displaystyle \Rightarrow \left. {\left[ {a\frac{{{x^3}}}{3} + b\frac{{{x^2}}}{2} + cx} \right]} \right|_{x = 0}^{x = 1} = 1\\ \displaystyle \Rightarrow \left[ {a\frac{{{1^3}}}{3} + b\frac{{{1^2}}}{2} + c} \right] - 0 = 1\\ \displaystyle \Rightarrow \frac{a}{3} + \frac{b}{2} + c = 1\\ \displaystyle \Rightarrow c = 1 - \frac{a}{3} - \frac{b}{2} \end{array}$ Hence, the preimage of $1$ is $\displaystyle a{x^2} + bx + \left( {1 - \frac{a}{3} - \frac{b}{2}} \right)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.