Elementary Linear Algebra 7th Edition

Published by Cengage Learning
ISBN 10: 1-13311-087-8
ISBN 13: 978-1-13311-087-3

Chapter 6 - Linear Transformations - 6.1 Introduction to Linear Transformations - 6.1 Exercises - Page 301: 46

Answer

Preimage of $(1,1)$ is $(\sqrt{2},0)$

Work Step by Step

Let $(x,y)$ be the preimage of $(1,1)$. Then $\begin{array}{l} T\left[ {\begin{array}{*{20}{c}} x\\ y \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 1\\ 1 \end{array}} \right]\\ \Rightarrow \left[ {\begin{array}{*{20}{c}} {x\cos ({{45}^ \circ })}&{ - y\sin ({{45}^ \circ })}\\ {x\sin ({{45}^ \circ })}&{y\cos ({{45}^ \circ })} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 1\\ 1 \end{array}} \right]\\ \Rightarrow \left[ {\begin{array}{*{20}{c}} {x(\frac{1}{{\sqrt 2 }})}&{ - y(\frac{1}{{\sqrt 2 }})}\\ {x(\frac{1}{{\sqrt 2 }})}&{y(\frac{1}{{\sqrt 2 }})} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 1\\ 1 \end{array}} \right] \end{array}$ $ \Rightarrow x(\frac{1}{{\sqrt 2 }}) - y(\frac{1}{{\sqrt 2 }}) = 1 \text{ and }x(\frac{1}{{\sqrt 2 }}) + y(\frac{1}{{\sqrt 2 }}) = 1$ Adding both equations, we have $x\frac{2}{\sqrt{2}}=2\\ \Rightarrow x=\sqrt{2}$ Put this in equation $(1)$. We get $\sqrt{2}\frac{1}{\sqrt{2}}-y\frac{1}{\sqrt{2}}=1\\ 1-y\frac{1}{\sqrt{2}}=1\\ \Rightarrow y=0$ Hence, the preimage of $(1,1)$ is $(\sqrt{2},0)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.