Elementary Linear Algebra 7th Edition

Published by Cengage Learning
ISBN 10: 1-13311-087-8
ISBN 13: 978-1-13311-087-3

Chapter 6 - Linear Transformations - 6.1 Introduction to Linear Transformations - 6.1 Exercises - Page 301: 45

Answer

a) $T(4,4)=(0,4\sqrt{2}) $ b) $T(4,4)=[2\sqrt{3}-2,2+2\sqrt{3}]$ c) $T(5,0)=((\frac{-5}{2}) ,{ }5(\frac{\sqrt{3}}{2}) )$

Work Step by Step

$T(x,y)=(xcos\theta -ysin\theta ,{ }xsin\theta +ycos\theta) $ a) When $\theta =45^{\circ}$ $T(4,4)=(4cos( 45^{\circ})-4sin(45^{\circ}) ,{ }4sin(45^{\circ}) +4cos(45^{\circ})) \\ =[4(\frac{1}{\sqrt{2}})-4(\frac{1}{\sqrt{2}}) ,{ }4(\frac{1}{\sqrt{2}}) +4(\frac{1}{\sqrt{2}})] \\ =[2\sqrt{2}-2\sqrt{2},2\sqrt{2}+2\sqrt{2}]\\ =(0,4\sqrt{2}) $ b) When $\theta =30^{\circ}$ $T(4,4)=(4cos( 30^{\circ})-4sin(30^{\circ}) ,{ }4sin(30^{\circ}) +4cos(30^{\circ})) \\ =[4(\frac{\sqrt{3}}{2})-4(\frac{1}{2}) ,{ }4(\frac{1}{{2}}) +4(\frac{\sqrt{3}}{2})] \\ =[2\sqrt{3}-2,2+2\sqrt{3}]$ c) When $\theta =120^{\circ}$ $T(5,0)=(5cos( 120^{\circ})-0sin(120^{\circ}) ,{ }5sin(120^{\circ}) +0cos(120^{\circ})) \\ =(5(\frac{-1}{2}) ,{ }5(\frac{\sqrt{3}}{2}) )\\ =((\frac{-5}{2}) ,{ }5(\frac{\sqrt{3}}{2}) )$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.