Elementary Linear Algebra 7th Edition

Published by Cengage Learning
ISBN 10: 1-13311-087-8
ISBN 13: 978-1-13311-087-3

Chapter 6 - Linear Transformations - 6.1 Introduction to Linear Transformations - 6.1 Exercises - Page 301: 48

Answer

$b=\frac{-5}{13}$ $ a=\frac{12}{13}$

Work Step by Step

Let $A$ be a $m\times n$ matrix corresponding to the linear transformation, say $T$. Then $T$ is defined by $T(v)=Av$, for all $v$ in the given domain. Here, $T:R^2\rightarrow R^2$ and the corresponding matrix is given by: $A = \left[ {\begin{array}{*{20}{c}} a&{ - b}\\ b&a \end{array}} \right]$ Now, $\begin{array}{l} T\left[ {\begin{array}{*{20}{c}} {12}\\ 5 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {13}\\ 0 \end{array}} \right]\\ \Rightarrow \left[ {\begin{array}{*{20}{c}} a&{ - b}\\ b&a \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {12}\\ 5 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {13}\\ 0 \end{array}} \right] \end{array}$ $ \Rightarrow 12a-5b=13, (1)\\ \quad 12b+5a=0,(2)$ By equation $(2)$, $\displaystyle a=\frac{-12b}{5}$ Puting this in equation $(1)$, we have $\displaystyle 12(\frac{-12b}{5})-5b=13$ $\Rightarrow b=\frac{-5}{13}$ $\Rightarrow a=\frac{12}{13}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.