Answer
$T\left( {\left[ {\begin{array}{*{20}{c}}
1&3\\
{ - 1}&4
\end{array}} \right]} \right) = \left[ {\begin{array}{*{20}{c}}
{12}&{ - 1}\\
7&4
\end{array}} \right]$
Work Step by Step
Observe that,
$\left[ {\begin{array}{*{20}{c}}
1&3\\
{ - 1}&4
\end{array}} \right] = 1\left[ {\begin{array}{*{20}{c}}
1&0\\
0&0
\end{array}} \right] + 3\left[ {\begin{array}{*{20}{c}}
0&1\\
0&0
\end{array}} \right] - 1\left[ {\begin{array}{*{20}{c}}
0&0\\
1&0
\end{array}} \right] + 4\left[ {\begin{array}{*{20}{c}}
0&0\\
0&1
\end{array}} \right]$
Since, $T$ is a linear transformation,
$\begin{array}{l}
T\left( {\left[ {\begin{array}{*{20}{c}}
1&3\\
{ - 1}&4
\end{array}} \right]} \right)\\
= T\left( {1\left[ {\begin{array}{*{20}{c}}
1&0\\
0&0
\end{array}} \right] + 3\left[ {\begin{array}{*{20}{c}}
0&1\\
0&0
\end{array}} \right] - 1\left[ {\begin{array}{*{20}{c}}
0&0\\
1&0
\end{array}} \right] + 4\left[ {\begin{array}{*{20}{c}}
0&0\\
0&1
\end{array}} \right]} \right)\\
= 1T\left( {1\left[ {\begin{array}{*{20}{c}}
1&0\\
0&0
\end{array}} \right]} \right) + 3T\left( {3\left[ {\begin{array}{*{20}{c}}
0&1\\
0&0
\end{array}} \right]} \right) - 1T\left( {\left[ {\begin{array}{*{20}{c}}
0&0\\
1&0
\end{array}} \right]} \right) + 4T\left( {\left[ {\begin{array}{*{20}{c}}
0&0\\
0&1
\end{array}} \right]} \right)\\
= 1\left[ {\begin{array}{*{20}{c}}
1&{ - 1}\\
0&2
\end{array}} \right] + 3\left[ {\begin{array}{*{20}{c}}
0&2\\
1&1
\end{array}} \right] - 1\left[ {\begin{array}{*{20}{c}}
1&2\\
0&1
\end{array}} \right] + 4\left[ {\begin{array}{*{20}{c}}
3&{ - 1}\\
1&0
\end{array}} \right]\\
= \left[ {\begin{array}{*{20}{c}}
{12}&{ - 1}\\
7&4
\end{array}} \right]
\end{array}$