Answer
a) $T\left[ {\begin{array}{*{20}{c}}
1\\
1\\
1\\
1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 1}\\
1\\
2\\
1
\end{array}} \right]$
b) Preimage of $\left[ {\begin{array}{*{20}{c}}
1\\
1\\
1\\
1
\end{array}} \right]$ is $\left[ {\begin{array}{*{20}{c}}
-1\\
1\\
\frac{1}{2}\\
1
\end{array}} \right]$
Work Step by Step
a)
$T\left[ {\begin{array}{*{20}{c}}
1\\
1\\
1\\
1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 1}&0&0&0\\
0&1&0&0\\
0&0&2&0\\
0&0&0&1
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
1\\
1\\
1\\
1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 1}\\
1\\
2\\
1
\end{array}} \right]$
b) Let the preimage of $\left[ {\begin{array}{*{20}{c}}
1\\
1\\
1\\
1
\end{array}} \right]$ be $\left[ {\begin{array}{*{20}{c}}
x\\
y\\
z\\
w
\end{array}} \right]$, then
$\displaystyle \begin{array}{l}
T\left[ {\begin{array}{*{20}{c}}
x\\
y\\
z\\
w
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1\\
1\\
1\\
1
\end{array}} \right]\\
\Rightarrow \left[ {\begin{array}{*{20}{c}}
{ - 1}&0&0&0\\
0&1&0&0\\
0&0&2&0\\
0&0&0&1
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
x\\
y\\
z\\
w
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1\\
1\\
1\\
1
\end{array}} \right]\\
\Rightarrow \left[ {\begin{array}{*{20}{c}}
{ - x}\\
y\\
{2z}\\
w
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1\\
1\\
1\\
1
\end{array}} \right]\\
\Rightarrow x = - 1,y = 1,z = \frac{1}{2},w = 1
\end{array}$
Hence, the preimage of $\left[ {\begin{array}{*{20}{c}}
1\\
1\\
1\\
1
\end{array}} \right]$ is $\left[ {\begin{array}{*{20}{c}}
-1\\
1\\
\frac{1}{2}\\
1
\end{array}} \right]$