Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 5 - Polynomials and Factoring - 5.3 Factoring Trinomials of the Type ax2+bx+c - 5.3 Exercise Set: 25

Answer

$(5x+4)^2$

Work Step by Step

Using the factoring of trinomials in the form $ax^2+bx+c,$ the $\text{ expression }$ \begin{array}{l}\require{cancel} 25x^2+40x+16 \end{array} has $ac= 25(16)=400 $ and $b= 40 .$ The two numbers with a product of $c$ and a sum of $b$ are $\left\{ 20,20 \right\}.$ Using these $2$ numbers to decompose the middle term of the trinomial expression above results to \begin{array}{l}\require{cancel} 25x^2+20x+20x+16 .\end{array} Grouping the first and second terms and the third and fourth terms, the given expression is equivalent to \begin{array}{l}\require{cancel} (25x^2+20x)+(20x+16) .\end{array} Factoring the $GCF$ in each group results to \begin{array}{l}\require{cancel} 5x(5x+4)+4(5x+4) .\end{array} Factoring the $GCF= (5x+4) $ of the entire expression above results to \begin{array}{l}\require{cancel} (5x+4)(5x+4) \\\\= (5x+4)^2 .\end{array}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.