Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 4 - Vector Spaces - 4.3 Subspaces - Problems - Page 273: 29

Answer

See below

Work Step by Step

Given $A=\begin{bmatrix} 1 & i &-2 \\ 3 & 4i & -5 \\ -1 & -3i & i \end{bmatrix}$ Since $x,y,z \in nullspace (A)$ we obtain $Ax=0\\ \begin{bmatrix} 1 & i &-2 \\ 3 & 4i & -5 \\ -1 & -3i & i \end{bmatrix}\begin{bmatrix} x \\ y \\ z \end{bmatrix}=0\\ \begin{bmatrix} x +iy-2z \\ 3x+ 4iy -5 z\\ -1x -3iy+ iz \end{bmatrix}=0\\ \rightarrow x +iy -2z =0\\ 3x+4iy -5z =0\\ -x+ -3iy +iz =0\\ \rightarrow -4(x+iy-2z)+3x+4iy-5z=-x+3z=0 \rightarrow x=3z\\ \rightarrow x +iy -2z +(-x-3iy+iz)=-2iy-2z+iz=-2iy+z(i-2)=0 \rightarrow y=\frac{i-2}{2i}z$ Substitue $3z+i(\frac{i-2}{2i}z)-2z=0 \rightarrow \frac{iz}{2}=0 \rightarrow z=0\\ x=3z=3.0=0\\ y=\frac{i-2}{2i}.0=0$ Hence, nullspace $(A)= \{(0,0,0)\}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.