Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 4 - Vector Spaces - 4.3 Subspaces - Problems - Page 273: 28

Answer

See below

Work Step by Step

Given $A=\begin{bmatrix} 1 & 3 &-2 & 1\\ 3 & 10 & -4 & 6 \\ 2 & 5 & -6 &-1 \end{bmatrix}$ Since $x,y,z,w \in nullspace (A)$ we obtain $Ax=0\\\begin{bmatrix} 1 & 3 &-2 & 1\\ 3 & 10 & -4 & 6 \\ 2 & 5 & -6 &-1 \end{bmatrix}\begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}=0\\ \begin{bmatrix} x +3y -2z +w\\ 3x+10y -4z+ 6w \\ 2x+ 5y -6z-1w \end{bmatrix}=0\\ \rightarrow x +3y -2z +w=0\\ 3x+10y -4z+ 6w =0\\ 2x+ 5y -6z-1w =0\\ \rightarrow 3x+10y-4z+6w-(x +3y -2z +w)=y+2z+3w=0 \rightarrow y=-2z-3w\\ \rightarrow x +3y -2z +w-3(y+2z+3w)=x-8z-8w=0 \rightarrow x=8z+8w$ Then $x=(8z+8w,-2z-3w,z,w)=(8z,-2z,z,0)+(8w,-3w,0,w)=z(8,-2,1,0)+w(8,-3,0,1)$ Hence, nullspace $(A) \subset \{z(8,-2,1,0)+w(8,-3,0,1):z,w \in R\}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.