Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 4 - Vector Spaces - 4.3 Subspaces - Problems - Page 273: 26

Answer

See below

Work Step by Step

Given $A=\begin{bmatrix} 1 &2 & 3 & 4\\ 5 & 6 & 7 & 8 \end{bmatrix}$ Since $x,y,z,w \in nullspace (A)$ we obtain $Ax=0\\ \begin{bmatrix} 1 &2 & 3 & 4\\ 5 & 6 & 7 & 8 \end{bmatrix}\begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}=0\\ \begin{bmatrix} x +2y + 3z + 4w\\ 5x+ 6y+ 7z + 8w \end{bmatrix}=0\\ \rightarrow x+2y+3z+4w=0\\ 5x+6y+7z+8w=0\\ \rightarrow x=-2y-3z-4w$ Substitute $5(-2y-3z-4w)+6y+7z+8w=0\\ \rightarrow y=-2z-3w$ Then $x=-2(-2z-3w)-3z-4w\\ x=z+2w$ Hence, nullspace $(A) =\{(x,y,z,w)\in R^4:x=z+w,y=-2z-3w\}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.