Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 4 - Vector Spaces - 4.3 Subspaces - Problems - Page 273: 27

Answer

See below

Work Step by Step

Given $A=\begin{bmatrix} 1 & -2 & 1\\ 4 & -7 & -2 \\ -1 & 3 &4 \end{bmatrix}$ Since $x,y,z \in nullspace (A)$ we obtain $Ax=0\\\begin{bmatrix} 1 & -2 & 1\\ 4 & -7 & -2 \\ -1 & 3 &4 \end{bmatrix}\begin{bmatrix} x \\ y \\ z \end{bmatrix}=0\\ \begin{bmatrix} x -2y +z\\ 4x -7y -2z \\ -x+3y+4z \end{bmatrix}=0\\ \rightarrow x-2y+z=0\\ 4x-7y-2z=0\\ -x+3y+4z=0\\ \rightarrow x-2y+z+(-x+3y+4z)=y+5z=0\\ 2(x-2y+z)+4x-7y-2z=6x-11y=0\\ 2(4x-7y-2z)+(-x+3y+4z)=7x-11y=0$ We have the system: $y+5z=0\\ 6x-11y=0\\ 7x-11y=0$ then $7x-11y-(6x-11y)=0 \rightarrow x=0\\ 6(0)-11y=0\rightarrow y=0\\ 0+5z=0 \rightarrow z=0$ Hence, nullspace $(A) =\{(0,0,0)\}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.