Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 4 - Vector Spaces - 4.3 Subspaces - Problems - Page 273: 12

Answer

See below

Work Step by Step

We can write set $S$ as $S=\{A =\begin{bmatrix} a & b \\ c &d \end{bmatrix} \in M_2(R): a+b+c+d=0\}$. We can notice that $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \in S$, hence $S$ is nonempty set. A1. Let $A=\begin{bmatrix} a & b \\ c & d \end{bmatrix},B=\begin{bmatrix} e & f \\ g & h \end{bmatrix} \in S$ Obtain: $A+B=\begin{bmatrix} a & b \\ c & d \end{bmatrix}+\begin{bmatrix} e & f \\ g & h \end{bmatrix}=\begin{bmatrix} a+e & b+f \\ c+g & d+h \end{bmatrix}=0$ Since $A+B \in S$, set $S$ is closed under addition. A2. Let $A=\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in S$ and $k \in R$ Obtain: $kA=\begin{bmatrix} a & b \\ c & d \end{bmatrix}=A=\begin{bmatrix} ka & kb\\ kc & kd \end{bmatrix}=k.0=0$ Since $kA \in S$, set $S$ is closed under scalar multiplication (2) From (1),(2) and since $S$ is nonempty subset, $S$ is a subspace of $M_2(R)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.