Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 3 - Determinants - 3.1 The Definition of the Determinant - Problems - Page 208: 60

Answer

See below

Work Step by Step

Given $y_1(x)=e^{x}\cos 2x\\ y_2(x)=e^{x}\sin 2x\\ y_3(x)=e^{-4x}\\ \rightarrow y_1'''(x)=e^{x}\cos 2x-2e^x\sin 2x=e^x(\cos 2x -2\sin 2x)\\ y_1''(x)=e^{x}\cos 2x-2e^x\sin 2x-2e^x\sin 2x-4e^x\cos 2x=-e^x(4\sin 2x +3\cos 2x)\\ y_1'(x)=e^{x}\cos 2x-2e^x\sin 2x=e^x(\cos 2x -2\sin 2x)$ Do the same for $y_2,y_3$, we get: $\rightarrow y_2'''(x)=4e^{x}\cos 2x-8e^x\sin 2x-3e^x\sin 2x-6e^x\cos 2x=-2e^x\cos 2x-11e^x\sin 2x\\ y_2''(x)=e^{x}\sin 2x+2e^x\cos 2x+2e^x\cos 2x-4e^x\sin 2x=4e^x\cos 2x-3e^x\sin 2x\\ y_2'(x)=e^{x}\sin 2x+2e^x\cos 2x\\ \rightarrow y_3'''(x)=27e^{3x}\\ y_3''(x)=9e^{3x}\\ y_3'(x)=3e^{3x}$ Obtain $det=\begin{vmatrix} y_1 & y_2 & y_3\\ y_1' & y_2' & y_3' \\ y_1'' & y_2'' & y_3'' \end{vmatrix}\\=\begin{vmatrix} e^{x}\cos 2x & e^{x}\sin 2x & e^{3x} \\e^{x}(\cos 2x -2\sin 2x) & e^{x}(\sin 2x+2e^x\cos 2x & 3e^{3x} \\-e^{-x}(4\sin 2x+3\cos 2x) & 4e^{x}\cos 2x-3e^x\sin 2x) & 9e^{3x} \end{vmatrix}\\ =15e^{5x}\cos ^2 2x+16e^{5x}\sin^2 2x\ne 0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.