Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 3 - Determinants - 3.1 The Definition of the Determinant - Problems - Page 208: 48

Answer

See below

Work Step by Step

Given $y_1(x)=e^x\\ y_2(x)=\cosh x\\ y_3(x)=\sinh x\\ \rightarrow y_1'''(x)=e^x\\ y_1''(x)=e^x\\ y_1'(x)=e^x$ Substituting into the given equation: $y_1'''-y''_1-y_1'+y_1\\ =e^x-e^x-e^x+e^x\\ =0$ Do the same for $y_2,y_3$, we get: $y_2'''-y''_2+4y_2'-4y_2\\ =\sinh x-\cosh x-\sinh x+\cosh x$ $y_3'''-y''_3+4y_3'-4y_3\\ =\cosh x-\sinh x-\cosh x+\sinh x\\ =0$ Obtain $det=\begin{vmatrix} y_1 & y_2 & y_3\\ y_1' & y_2' & y_3' \\ y_1'' & y_2'' & y_3'' \end{vmatrix}=\begin{vmatrix} e^x & \cosh x & \sinh x \\e^x & \sinh x & \cosh x \\e^x & \cosh x & \sinh x \end{vmatrix}\\ =e^x.\sinh x.\sinh x+\cosh x.\cosh x.e^x+\sinh x.e^x.\cosh x-e^x.\sinh x.\sinh x-\cosh x.\cosh x.e^x-\sinh x.e^x.\cosh x\\ =e^x\sin^2 x+e^x\cosh ^2x+e^x\sinh x\cosh x-e^x\sin^2x-e^x\cosh ^2x-e^x\sinh x\cosh x\\ =0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.