Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 3 - Determinants - 3.1 The Definition of the Determinant - Problems - Page 208: 47

Answer

See below

Work Step by Step

Given $y_1(x)=\cos 2x\\ y_2(x)=\sin 2x\\ y_3(x)=e^x\\ \rightarrow y_1'''(x)=8\sin 2x\\ y_1''(x)=-4\cos 2x\\ y_1'(x)=-2\sin 2x$ Substituting into the given equation: $y_1'''-y''_1+4y_1'-4y_1\\ =8\sin 2x+4\cos 2x-8\sin 2x-4\cos 2x\\ =0$ Do the same for $y_2,y_3$, we get: $y_2'''-y''_2+4y_2'-4y_2\\ =-8\cos 2x+4\sin 2x+8\cos 2x-4\sin 2x\\ =0$ $y_3'''-y''_3+4y_3'-4y_3\\ =e^x-e^x+4e^x-4e^x\\ =0$ Obtain $det=\begin{vmatrix} y_1 & y_2 & y_3\\ y_1' & y_2' & y_3' \\ y_1'' & y_2'' & y_3'' \end{vmatrix}=\begin{vmatrix} \cos 2x&\sin 2x& e^x \\ -2\sin 2x &-2\cos 2x& e^x\\-4\cos 2x& -4\sin 2x & e^x \end{vmatrix}\\ =\cos 2x(-2\cos 2x)e^x+\sin 2x.(-4\cos 2x).e^x+e^x.(-2\sin 2x).(-4\sin 2x)-(-4\cos 2x).(-2\cos 2x).e^x-(-4\sin 2x).e^x.\cos 2x-e^x.(-2\sin 2x).\sin 2x\\ =2e^x\cos^x-4e^x\sin 2x \cos 2x+8e^x\sin^2 2x+8e^x\cos^2 2x+4e^x\sin 2x \cos 2x+2e^x\sin^2 2x\\ =10e^x\sin^2 2x+10e^x\cos ^2 x\\ =10e^x (\sin^2 2x+\cos ^2 x)\\ =10e^x \ne 0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.