Answer
$e^{-(t-2)}\sin (t-2)u_2(t)$
Work Step by Step
We are given that $F(s)=\frac{e^{-2s}}{s^2+2s+2}$
Now,$f(t)= L^{-1}[\frac{e^{-2s}}{s^2+2s+2}]\\
=L^{-1}[\frac{e^{-2s}}{(s+1)^2+1}]\\
=L^{-1}[e^{-2s}(L(e^{-t}\sin t))]\\
=e^{-(t-2)}\sin (t-2)u_2(t)$